Impulse absorption by tapered horizontal alignments of elastic spheres.
نویسندگان
چکیده
We present an analytical and numerical study of the problem of mechanical impulse propagation through a horizontal alignment of progressively shrinking (tapered) elastic spheres that are placed between two rigid end walls. The studies are confined to cases where initial loading between the spheres is zero (i.e., in the "sonic vacuum" region). The spheres are assumed to interact via the Hertz potential. Force and energy as a function of time for selected grains that comprise the solitary wave are provided and shed light on the system's behavior. Propagation of energy is analytically studied in the hard-sphere approximation and phase diagrams plotting normalized kinetic energy of the smallest grain at the tapered end are developed for various chain lengths and tapering factors. These details are then compared to kinetic energy phase diagrams obtained via extensive dynamical simulations. Our figures indicate that the ratios of the kinetic energies of the smallest to largest grains possess a Gaussian dependence on tapering and an exponential decay when the number of grains increases. The conclusions are independent of system size, thus being applicable to tapered alignments of micron-sized spheres as well as those that are macroscopic and more easily realizable in the laboratory. Results demonstrate the capabililty of these chains to thermalize propagating impulses and thereby act as potential shock absorbing devices.
منابع مشابه
Experimental evidence of shock mitigation in a Hertzian tapered chain.
We present an experimental study of the mechanical impulse propagation through a horizontal alignment of elastic spheres of progressively decreasing diameter phi(n): namely, a tapered chain. Experimentally, the diameters of spheres which interact via the Hertz potential are selected to keep as close as possible to an exponential decrease, phi(n+1) = (1-q)phi(n), where the experimental tapering ...
متن کاملDamped Vibrations of Parabolic Tapered Non-homogeneous Infinite Rectangular Plate Resting on Elastic Foundation (RESEARCH NOTE)
In the present paper damped vibrations of non-homogeneous infinite rectangular plate of parabolically varying thickness resting on elastic foundation has been studied. Following Lévy approach, the equation of motion of plate of varying thickness in one direction is solved by quintic spline method. The effect of damping, elastic foundation and taperness is discussed with permissible range of pa...
متن کاملCrashworthiness design of multi-cell tapered tubes using response surface methodology
In this article, crashworthiness performance and crushing behavior of tapered structures with four internal reinforcing plates under axial and oblique dynamic loadings have been investigated. These structures have a tapered form with five cross sections of square, hexagonal, octagonal, decagon and circular shape. In the first step, finite element simulations performed in LS-DYNA were validated ...
متن کاملStability and vibration analyses of tapered columns resting on one or two-parameter elastic foundations
This paper presents a generalized numerical method to evaluate element stiffness matrices needed for the free vibration and stability analyses of non-prismatic columns resting on one- or two-parameter elastic foundations and subjected to variable axial load. For this purpose, power series approximation is used to solve the fourth–order differential equation of non-prismatic columns with v...
متن کاملCreep Stress Redistribution Analysis of Thick-Walled FGM Spheres
Time-dependent creep stress redistribution analysis of thick-walled FGM spheres subjected to an internal pressure and a uniform temperature field is investigated. The material creep and mechanical properties through the radial graded direction are assumed to obey the simple power-law variation throughout the thickness. Total strains are assumed to be the sum of elastic, thermal and creep strain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 72 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2005